@ Thesis Defence

Test Case Generation and Fault Localization
for Data Science Programs

Mohammad Rezaalipour

USI Universita della Svizzera italiana
Lugano, Switzerland

June 13, 2024

“Big” data

Data Science

Neural Networks implemented as programs

def dense block(
x, nb layers, nb channels, growth rate,
dropout rate=None, bottleneck=False,

X list = [x]
for i in range(nb layers):
cb = convolution block(x, growth rate,
Dropout rate,
bottleneck)

x list.append(cb)

x = Concatenate @xis=-1) (x list)

nb channels += growth rate
return x, nb channels

Written by domain experts who PKOBLEM

may not be professional
programmers

nature View All Nature Research Journals Search

Explore Content v Journal Information v Publish With Us v Subscribe Sign Up For Alerts £

re > article

NEWS FEATURE 02 APRIL 2020 - CORRECTION 03 APRIL 2020

Special report: The simulations driving
the world’s response to COVID-19

i ('or(mu\irm A |
. . . | Modelling behind lockdown was an

. unreliable buggy mess, claim experts

Data that predicted 500,000 could die in UK unless extreme measures were taken are impossible to replicate, say scientific teams
Science ‘In our commercial reality, we LA \

ond il Zolfagharieant would fire anyone for developing e !

THE Coviel 19 ssodellinn that sent Brit — — " i of Oxfi

Coronavirus pandemic simulation has been criticized as
being unreliable and buggy

David Adam

An Empirical Study on Program Failures of Deep Learning Jobs

Ru Zhang Wencong Xiao* Hongyu Zhang
Microsoft Research Alibaba Group The University of Newcastle
v-ruzha@microsoft.com wencong.xwc@alibaba-inc.com hongyu.zhang@newecastle.edu.au
Yu Liu Haoxiang Lin® Mao Yang
Microsoft Research Microsoft Research Microsoft Research
v-yucli@microsoft.com haoxlin@microsoft.com maoyang@microsoft.com
ABSTRACT ACM Reference Format:

Deep learning has made significant achievements in many appli-
cation areas. To train and test models more efficiently, enterprise
developers submit and run their deep learning programs on a shared,
multi-tenant platform. However, some of the programs fail after a
long execution time due to code/script defects, which reduces the

Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao
Yang. 2020. An Empirical Study on Program Failures of Deep Learning Jobs.
In 42nd International Conference on Software Engineering (ICSE 20), May
23-29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3377811.3380362

“A noticeable percentage [...] threw runtime exceptions
due to code or script defects [...]"

An empirical study on TensorFlow program bugs (Zhang et al. 2018)
A Comprehensive Study on Deep Learning Bug Characteristics (Islam et al. 2019)
Taxonomy of Real Faults in Deep Learning Systems (Humbatova et al. 2019)

Repairing deep neural networks: Fix patterns and challenges (Islam et al. 2020)

Bugs with characteristics different from traditional software

Thesis statement

Understanding the capabilities and limitations of standard test generation
and fault localization techniques on data science programs implemented in
dynamic languages such as Python informs the development of new
techniques that can be more effective.

Contributions

Part 1
- Test generation approach for neural network programs
- Test generation tool
- Curated dataset of neural network of bugs

Part 2
- Empirical study of fault localization in Python programs
- Fault localization tool

10

Part 1
- Test generation approach for neural network programs
- Test generation tool
- Curated dataset of neural network of bugs

11

jjm Generating tests for Python NN programs

Domain specific parameter types

’
»

def DenselNet (input shape=None, dense blocks=3, dense layers=-1,
growth rate=12, nb classes=None, dropout rate=None,
bottleneck=False, compression=1.0, weight decay=le-4,
depth=40) :

https://github.com/cmasch/densenet/

12

https://github.com/cmasch/densenet/

def DenseNet (input shape=None, dense blocks=3, dense layers=-1,
growth rate=12, nb classes=None, dropout rate=None,
bottleneck=False, compression=1.0, weight decay=le-4,
depth=40) :

1f nb classes==None:
raise Exception('Please define number of classes.')

if compression <=0.0 or compression > 1.0:
raise Exception('Compression must be between 0.0 and 1.0.")

1f type (dense layers) 1s list:

1f len(dense layers) != dense blocks:
raise AssertionError ('Dense blocks must be the same as layers')
elif dense layers == -1:
dense layers = (depth - 4)/3 .

https://github.com/cmasch/densenet/

13

https://github.com/cmasch/densenet/

=)

8 tests
all invalid
none triggering the failure

14

=)

S tests
4 invalid
none triggering (any) failure

15

JEAL

Preconditions

=)

No tests

16

- aN annotations

&g annotate
NN program
aNNoTest tool
Test templates
Hypothesis tool

Test suite

run

17

Garg (input shape): tuples(ints (min=20, max=70),
ints (min=20, max=70),
ints (min=1, max=3))

Garg(dense blocks): ints(min=2, max=5)

def DenseNet (input shape=None, dense blocks=3, dense layers=-1,
growth rate=12, nb classes=None, dropout rate=None,
bottleneck=False, compression=1.0, weight decay=le-4,
depth=40) :

18

aNNoTest

aN annotations

=)

36 tests
all valid
one triggering the failure

19

Experimental Evaluation of aNNoTest

20

Precision: Does aNNoTest generate tests that expose bugs
with few false positives (invalid tests)?

Recall: Can aNNoTest reproduce known, relevant bugs (that
were discovered and confirmed by expert manual analysis)?

21

Experimental Subjects

Projects LOC Avg. Number of Known

Annotations Bugs
Subjects P 2 3917 1.3 ?
Subjects R 19 14219 6.0 81
Keras ¥ Te O PyTorch

22

NN program

Precision

True positives

False positives

23

NN program

Recall

Annotate function f

containing the bug

Run aNNoTest

True positive

False positive

Negative

Stop

24

Subjects P

Subjects R

Experimental Results

Known Found Spurious Precision
Bugs Bugs P
0 50 6 89%
81 63 0 100%

Recall

?

78%

25

& mohrez86 Add citation file 326ffd7 - 10 months ago 0 23 Commits
B annotest Blacken app.py and add code to blacken generated tests 10 months ago
B tests Blacken tests package 10 months ago
[.gitignore Squash dev to main last year
() CHANGELOG.md Add changelog file 10 months ago
[cITATION.cff Add citation file 10 months ago
[LICENSE Initial commit last year
[README.md Add new pip command to install from GitHub 10 months ago
D pyproject.toml Add pyproject.toml last year
[requirements.txt Add requirements 10 months ago
D setup.py Blacken setup.py and add requirements and modify desc... 10 months ago
[0 README 3 GPL-3.0 license 7 =

aNNoTest pip install annotest
downloads 1k J| code style black

https://qgithub.com/atom-sw/annotest

https://github.com/atom-sw/annotest

Part 2
- Empirical study of fault localization in Python programs
- Fault localization tool

27

Source code

What is Fault Localization?

Test suite

- -

= .

Line number

Score

/

23

0.7

13

0.3

21

0.3

124

0.2

28

May 2024 May 2023 Change Programming Language
1 1 (ol Python

2 2 G c

3 4 -~ @ C++

4 3 v s, Java

5 5 @ c

2 7 » JS JavaScript

https://www.tiobe.com/tiobe-index

29

https://www.tiobe.com/tiobe-index

40

30

20

10

C & C++ Java Other (not Python)

Wong et al. (2016, Table 6)

Subject programs (1977 - 2014)

30

P One SBFL empirical study (Widyasari et al. 2022)

One SBFL tool (Sarhan et al. 2021)

31

An Empirical Study of Fault Localization Families
and Their Combinations

Daming Zou ™, Jingjing Liang, Yingfei Xiong ', Michael D. Ernst, and Lu Zhang

Abstract—The performance of fault localization techniques is critical to their adoption in practice. This paper reports on an empirical
study of a wide range of fault localization techniques on real-world faults. Different from previous studies, this paper (1) considers a
wide range of techniques from different families, (2) combines different techniques, and (3) considers the execution time of different
techniques. Our results reveal that a combined technique significantly outperforms any individual technique (200 percent increase in
faults localized in Top 1), suggesting that combination may be a desirable way to apply fault localization techniques and that future
techniques should also be evaluated in the combined setting. Our implementation is publicly available for evaluating and combining
fault localization techniques.

Index Terms—Fault localization, learning to rank, program debugging, software testing, empirical study

+

Differentiated conceptual replication

32

The first multi-family large-scale empirical study of fault
localization in open-source Python programs

33

34

FauxPy

i
pytest

35

B fauxpy Fix a bug - ST crashing if program crash is not in a function 10 months ago
B tests Change style of tests 10 months ago
D .gitignore Update gitignore 10 months ago
[CHANGELOG.md Update change log file 10 months ago
[CITATION.cff Add citation file 10 months ago
[LicENSE Update license file last year
[README.md Add direct pip install command to readme 10 months ago
[pyproject.toml Add pyproject.toml file last year
(] pytest.ini Add the current version last year
(] requirements.txt Update requirements file 10 months ago
(] setup.py Blacken setup.py 10 months ago
[0 README 23 MIT license 7 =

FauxPy pip install fauxpy

https://qgithub.com/atom-sw/fauxpy

https://github.com/atom-sw/fauxpy

Comparing the effectiveness and efficiency
of fault localization techniques

37

Effectiveness

Top-1
Top-3

Top-10

Exam score

Location List Length

Program size = 10

Line number Score Rank
23 1 0.7 1
13 /0.3 3
21 /0.3 3
124 0.2 4

38

Efficiency

Wall-clock running time

39

Subjects Projects

BugsInPy
Selected

501 ——

Fails on buggy
Passes on fixed

17
13

381

135 —

kLOC Tests Faults
714.0 24 817 501
515.4 18 882 135
Development | 342 Non-empty
dependencies? ground truth
340
Random 313

selection

FL <48 hours

40

Subjects Projects kLOC Tests Faults

BugsinPy 17 714.0 24 817 501

Selected 13 515.4 18 882 135
? httpie @ nvbn/thefuck @
|:5| pandas TQDM

I Pe
spaCy: Industrial-strength L

@ COOKIECUTTER G FastAPI Lltht g

o
»

-~

‘\0

<7 Tornado

You @[3 - DL

41

Project category

Bug kind

42

Summary of findings on
the fault localization empirical study

43

Effectiveness

SBFL > MBFL > PS = ST

Family % of bugs in Top-5
MBFL 27
PS 7
ST 6

44

Effectiveness

Combined > SBFL > MBFL > PS = ST

Family % of bugs in Top-5
MBFL 27
PS 7
SBFL 43
ST 6

Efficiency

ST > SBFL > PS > MBFL

Family Time (s)
MBFL 15774
PS 9751
SBFL 589

46

Project category

Bugs in data science (DS) projects challenge fault localization

% of bugs in Top-5

Family
CL DEV DS WEB
MBFL 38 28 19 20
PS 5 10 7 3
SBFL 60 37 30 40

ST 9 10 0 5

Most findings
replicate

Java

Python

48

Python vs Java

Python: ST = PS

Java: ST > PS

Top-1% Top-3% Top-5% Top-10%
Family
Python Java | Python Java Python Java Python Java
PS 1 4 6 7 6

ST

6

9

o I

11

49

Conclusions and future work

50

Many bugs
Bugs with different characteristics

Domain specific data types

51

Contributions

- The aNNoTest approach
- The aNNoTest tool
- Curated dataset of neural network of bugs

- Empirical study of fault localization in Python programs
- The FauxPy tool

52

Future work: Test generation

Carg(model g): objs(gen model g)
Garg(model d): objs(gen model d)

def build gan(model g, model d, name="gan"):
i

@ Extending argument constraints

@arg(model g): keras models(par al, par aZz,
@arg(model d): keras models (par bl, par b2,

def build gan(model g, model d, name="gan"):
i

Future work: Fault localization

No mutations on buggy statement — SBFL > MBFL
Mutations on buggy statements — MBFL = SBFL

Mutable bugs

Family

MBFL
PS
SBFL

ST

Thesis statement &: annotate

NN program aN annotations

aNNoTest tool

Understanding the capabilities and limitations of standard test generation
and fault localization techniques on data science programs implemented in
dynamic languages such as Python informs the development of new

techniques that can be more effective. Hypothesis ool

Effectiveness

FauxPy

SBFL > MBFL > PS = ST

Family % of bugs in Top-5

MBFL 2

" PS 7
pytest

ST 6

Extra slides

56

Subjects P
Subjects R

Experimental Subjects

Projects LOC TOt:‘“
Functions
2 3917 249
19 14219 735

Keras ¢ Tensor

Tested Avg. Number of
Functions Annotations

105 1.33
24 6.00

O PyTorch

Known
Bugs

81

57

Effectiveness

A > B: “Ais much more effective than B, if A@k% > B@k% for all ks, and
A@k%—- B@k% = 10 for at least three ks out of four.

A= B: “Ais more effective than B”, if A@k% > B@k% for all ks, and A@k%-
B@k% = 5 for at least one k out of four.

A= B: “A tends to be more effective than B”, if A@k% = B@k% for all ks, and
A@Kk% > B@k% for at least three ks out of four.

A= B: “Ais about as effective as B”, if none of A> B,A>B,A=2B,B > A, B
> A, and B = A holds.

58

Efficiency

A 2> B: “Ais much more efficient than B”, if T(B) > 10 - T(A).
A= B: “Ais more efficient than B”, if T(B) > 1.1 - T(A).

A = B: “Ais about as efficient as B”, if none of A> B,A>B,B > A, and B >
A holds.

59

Effectiveness vs Granularity
Statement = Function = Module

% of bugs in Top-5

Family
Statement | Function Module
MBFL 27 61 86
PS 7 13 21
SBFL 43 72 92

ST 6 27 36

60

Python vs Java - best on crashing bugs

Python: SBFL

Java: ST

Crashing bugs
Family
Top-1% Top-3% | Top-5% Top-10%
MBFL 7 21 27 34
PS 0 0 0 0
SBFL
ST 0 10 16 37

61

