
Test Case Generation and Fault Localization
for Data Science Programs

Mohammad Rezaalipour

USI Università della Svizzera italiana
Lugano, Switzerland

Thesis Defence

June 13, 2024

Data Science“Big” data

Machine
Learning

Information
ScienceStatistics

Knowledge

2

Economics

Finance

Medicine

Predicting market trends

Fraud detection

Diagnosing diseases

3

Neural Networks implemented as programs

def dense_block(
 x, nb_layers, nb_channels, growth_rate,
 dropout_rate=None, bottleneck=False,
):

 x_list = [x]
 for i in range(nb_layers):
 cb = convolution_block(x, growth_rate,
 Dropout_rate,
 bottleneck)
 x_list.append(cb)
 x = Concatenate(axis=-1)(x_list)
 nb_channels += growth_rate
 return x, nb_channels

4

Written by domain experts who
may not be professional

programmers

5

Coronavirus pandemic simulation has been criticized as
being unreliable and buggy

6

“A noticeable percentage [...] threw runtime exceptions
due to code or script defects [...]”

7

An empirical study on TensorFlow program bugs (Zhang et al. 2018)

A Comprehensive Study on Deep Learning Bug Characteristics (Islam et al. 2019)

Taxonomy of Real Faults in Deep Learning Systems (Humbatova et al. 2019)

Repairing deep neural networks: Fix patterns and challenges (Islam et al. 2020)

Bugs with characteristics different from traditional software

8

Understanding the capabilities and limitations of standard test generation
and fault localization techniques on data science programs implemented in

dynamic languages such as Python informs the development of new
techniques that can be more effective.

Thesis statement

9

Contributions

Part 1
- Test generation approach for neural network programs
- Test generation tool
- Curated dataset of neural network of bugs

Part 2
- Empirical study of fault localization in Python programs
- Fault localization tool

10

Part 1
- Test generation approach for neural network programs
- Test generation tool
- Curated dataset of neural network of bugs

Part 2
- Empirical study of fault localization in Python programs
- Fault localization tool

11

https://github.com/cmasch/densenet/

Generating tests for Python NN programs

def DenseNet(input_shape=None, dense_blocks=3, dense_layers=-1,
 growth_rate=12, nb_classes=None, dropout_rate=None,
 bottleneck=False, compression=1.0, weight_decay=1e-4,
 depth=40):

Domain specific parameter types

12

https://github.com/cmasch/densenet/

def DenseNet(input_shape=None, dense_blocks=3, dense_layers=-1,
 growth_rate=12, nb_classes=None, dropout_rate=None,
 bottleneck=False, compression=1.0, weight_decay=1e-4,
 depth=40):

 if nb_classes==None:
 raise Exception('Please define number of classes.')

 if compression <=0.0 or compression > 1.0:
 raise Exception('Compression must be between 0.0 and 1.0.')

 if type(dense_layers) is list:
 if len(dense_layers) != dense_blocks:
 raise AssertionError('Dense blocks must be the same as layers')
 elif dense_layers == -1:
 dense_layers = (depth - 4)/3

 ...

https://github.com/cmasch/densenet/

Bug

13

https://github.com/cmasch/densenet/

8 tests
all invalid

none triggering the failure

DenseNet

14

5 tests
4 invalid

none triggering (any) failure

DenseNet

15

No testsDenseNet

Preconditions

16

NN program

Test templates

aN annotations

Test suite

Passing tests

Failing tests

aNNoTest tool

annotate

Hypothesis tool

run

17

@arg(input_shape): tuples(ints(min=20, max=70),
 ints(min=20, max=70),
 ints(min=1, max=3))

@arg(dense_blocks): ints(min=2, max=5)

...

def DenseNet(input_shape=None, dense_blocks=3, dense_layers=-1,
 growth_rate=12, nb_classes=None, dropout_rate=None,
 bottleneck=False, compression=1.0, weight_decay=1e-4,
 depth=40):

18

DenseNet

aN annotations

aNNoTest
36 tests
all valid

one triggering the failure

19

Experimental Evaluation of aNNoTest

20

Precision: Does aNNoTest generate tests that expose bugs
with few false positives (invalid tests)?

Recall: Can aNNoTest reproduce known, relevant bugs (that
were discovered and confirmed by expert manual analysis)?

21

Experimental Subjects

Projects LOC Avg. Number of
Annotations

Known
Bugs

Subjects P 2 3917 1.3 ?

Subjects R 19 14219 6.0 81

22

Precision

NN program Annotate every
function you can Run aNNoTest

False positivesTrue positives

Stop

23

Recall

NN program Annotate function f
containing the bug Run aNNoTest

False positiveTrue positive Negative

Stop

24

Experimental Results

Known
Bugs

Found
Bugs Spurious Precision Recall

Subjects P 0 50 6 89% ?

Subjects R 81 63 0 100% 78%

25

https://github.com/atom-sw/annotest

pip install annotest

26

https://github.com/atom-sw/annotest

Part 1
- Test generation approach for neural network programs
- Test generation tool
- Curated dataset of neural network of bugs

Part 2
- Empirical study of fault localization in Python programs
- Fault localization tool

27

What is Fault Localization?

Source code

Test suite
Fault Localization Technique Scored Entities

Line number Score

23 0.7

13 0.3

21 0.3

124 0.2
28

https://www.tiobe.com/tiobe-index 29

https://www.tiobe.com/tiobe-index

Subject programs (1977 - 2014)

Wong et al. (2016, Table 6) 30

One SBFL empirical study (Widyasari et al. 2022)

One SBFL tool (Sarhan et al. 2021)

31

Differentiated conceptual replication
32

The first multi-family large-scale empirical study of fault
localization in open-source Python programs

33

Spectrum-based (SBFL)

DStar
Ochiai

Tarantula

Mutation-based (MBFL)

Metallaxis
Muse

Predicate switching (PS)

Stack trace (ST)

Combined

CombineFL
AvgFL

Statement

Function

Module

34

FauxPy

SBFL

MBFL

PS

ST

35

https://github.com/atom-sw/fauxpy

pip install fauxpy

36

https://github.com/atom-sw/fauxpy

Comparing the effectiveness and efficiency
of fault localization techniques

37

Effectiveness

Top-1

Top-3

Top-5

Top-10

Exam score

Location List Length

Line number Score Rank

23 0.7 1

13 0.3 3

21 0.3 3

124 0.2 4

0

0

1

1

4/10

4

Program size = 10

38

Efficiency

Wall-clock running time

39

Subjects Projects kLOC Tests Faults

BugsInPy 17 714.0 24 817 501

Selected 13 515.4 18 882 135

Fails on buggy
Passes on fixed

Non-empty
ground truth

Development
dependencies?

FL < 48 hoursRandom
selection

501
381 342

340

313
135

40

Subjects Projects kLOC Tests Faults

BugsInPy 17 714.0 24 817 501

Selected 13 515.4 18 882 135

41

Project category

Command line (CL)

Development (DEV)

Data science (DS)

Web (WEB)

Bug kind

Crashing

Predicate

Mutable

42

Summary of findings on
the fault localization empirical study

43

Effectiveness

SBFL > MBFL ≫ PS ≃ ST

Family % of bugs in Top-5

MBFL 27

PS 7

SBFL 43

ST 6

44

Effectiveness

Combined > SBFL > MBFL ≫ PS ≃ ST

Family % of bugs in Top-5

MBFL 27

PS 7

SBFL 43

ST 6

Combined 49
45

Family Time (s)

MBFL 15774

PS 9751

SBFL 589

ST 2

Efficiency

ST ≫ SBFL ≫ PS > MBFL

46

Family
% of bugs in Top-5

CL DEV DS WEB

MBFL 38 28 19 20

PS 5 10 7 5

SBFL 60 37 30 40

ST 9 10 0 5

Project category

Bugs in data science (DS) projects challenge fault localization

47

Most findings
replicate

Java Python=

48

Family
Top-1% Top-3% Top-5% Top-10%

Python Java Python Java Python Java Python Java

PS 3 1 5 4 7 6 7 6

ST 0 6 4 9 6 11 13 11

Python vs Java

Python: ST ≃ PS Java: ST > PS

49

Conclusions and future work

50

Many bugs

Bugs with different characteristics

Domain specific data types

51

Contributions

- The aNNoTest approach
- The aNNoTest tool
- Curated dataset of neural network of bugs

- Empirical study of fault localization in Python programs
- The FauxPy tool

52

Future work: Test generation

@arg(model_g): objs(gen_model_g)
@arg(model_d): objs(gen_model_d)

def build_gan(model_g, model_d, name="gan"):
 # ...

@arg(model_g): keras_models(par_a1, par_a2, ...)
@arg(model_d): keras_models(par_b1, par_b2, ...)

def build_gan(model_g, model_d, name="gan"):
 # ...

Extending argument constraints

53

No mutations on buggy statement → SBFL > MBFL
Mutations on buggy statements → MBFL ≥ SBFL

Future work: Fault localization

Family
Mutable bugs

Top-1 Top-3 Top-5 Top-10

MBFL 14 41 50 63

PS 5 9 12 12

SBFL 12 35 50 57

ST 0 4 5 19
54

55

Extra slides

56

Experimental Subjects

Projects LOC Total
Functions

Tested
Functions

Avg. Number of
Annotations

Known
Bugs

Subjects P 2 3917 249 105 1.33 -

Subjects R 19 14219 735 24 6.00 81

57

A ≫ B: “A is much more effective than B”, if A@k% > B@k% for all ks, and
A@k%− B@k% ≥ 10 for at least three ks out of four.

A > B: “A is more effective than B”, if A@k% > B@k% for all ks, and A@k%−
B@k% ≥ 5 for at least one k out of four.

A ≥ B: “A tends to be more effective than B”, if A@k% ≥ B@k% for all ks, and
A@k% > B@k% for at least three ks out of four.

A ≃ B: “A is about as effective as B”, if none of A ≫ B, A > B, A ≥ B, B ≫ A, B
> A, and B ≥ A holds.

Effectiveness

58

A ≫B: “A is much more efficient than B”, if T(B) > 10 · T(A).

A > B: “A is more efficient than B”, if T(B) > 1.1 · T(A).

A ≃ B: “A is about as efficient as B”, if none of A ≫ B, A > B, B ≫ A, and B >
A holds.

Efficiency

59

Family
% of bugs in Top-5

Statement Function Module

MBFL 27 61 86

PS 7 13 21

SBFL 43 72 92

ST 6 27 36

Effectiveness vs Granularity

Statement ≃ Function ≃ Module

60

Python vs Java - best on crashing bugs

Python: SBFL Java: ST

Family
Crashing bugs

Top-1% Top-3% Top-5% Top-10%

MBFL 7 21 27 34

PS 0 0 0 0

SBFL 14 31 43 53

ST 0 10 16 37
61

